Положим что прямая параллельная AC и проходящая через M , пересекает AB и AC в точках N и Y соотвественно , аналогично Z и X точки на BC и AC соотвественно , так же L , W на AC и BC .
Так как прямые па аралелльны , то четырёхугольники LMXA , MNBZ , MWCY параллелограммы .
Значит AL=XM , MY=WC , MX=BN .
Полученные три треугольника подобны между собой , получаем
(LN/MX)^2 = (27/12)
(ZW/MY)^2 = (3/12)
(MZ/LN)^2 = (3/27)
LN/MX=3/2
ZW/MY=1/2
MZ/LN=1/3
Откуда LN+AL = LN+MX = 5MX/2
Из подобия треугольников NML и ANY получаем
(LN/(LN+AL))^2 = 27/(27+S(ALMX) + 12)
Или 9/25 = 27/(39+S(ALMX))
Откуда S(ALMX) = 36
Аналогично и с двумя другими S(MNBZ)=18 , S(MYCW) = 12
Значит
S(ABC) = 27+12+3+36+18+12 = 108
(180 - ВОА) : 2 = ВАО (180 - 46) : 2 = 67
90 - ВАО = САD 90 -67 = 23
Ответ: угол САD = 23.
Если не правильно не судите строго:З
Ответ:
2. 336.
4. 64.
Объяснение:
2) ABCD - прямоугольник => BC = AD = 28 см ; AC = BD, AO = OC = BO = OD =>
треугольник AOB равнобедренный, AD - основание.
OH - высота (по условию) => OH - медиана (по теореме о высоте, проведенной из вершины равнобедренного треугольника) => AH = HB.
AO = OC, AH = HD => OH - средняя линия треугольника ADC => OH = 1/2 * DC =>
DC = 6 * 2 = 12 см.
Площадь ABCD = AD * DC = 28 * 12 = 336 см квадратных.
Ответ : 336 см квадратных.
4) Достроим прямую AB и точку M до прямоугольника KBCM.
ABCD - квадрат => AB = BC = DC = AD = MD.
Площадь треугольника MBC = 1/2 * MC * BC.
MC = 2 * AB, BC = AB => Площадь треугольника MBC = 1/2 * 2 * AB * AB = AB^2 (AB в квадрате).
64 = AB^2;
AB = (корень из 64)
AB = 8 см.
Площадь квадрата ABCD = AB^2.
Площадь квадрата ABCD = 8 * 8 = 64 см квадратных.
Ответ : 64 см квадратных.
<span>Угол АСО=углуВСО=99:2=49,5 , так как центр окружности лежит на биссектрисе угла. Угол СОВ =углу СОА => 90-49,5=40,5 Угол АОВ=40,5+40,5=81</span>