∡ВОА=180°-∡АОС (смежные углы)
∡ВОА=180°-140°=40°
Рассмотрим ΔВОА
∡ВОА=40° ; ∡ОАВ=∡АВО=х (углы при основании равнобедренного треугольника равны; возьмем неизвестные углы за икс)
Сумма углов в треугольнике ΔВОА равна 180°
∡ОАВ+∡АВО+∡ВОА=180°
х+х+40°=180°
2х=140⇒х=70° (∡ОАВ=∡АВО=70°)
∡АВО=∡В=70°
Рассмотрим ΔАОС
∡АОС=140° ; ∡ОАС=∡ОСА=х (углы при основании равнобедренного треугольника равны; возьмем неизвестные углы за икс)
Сумма углов в треугольнике ΔАОС равна 180°
∡АОС+∡ОАС+∡ОСА=180°
140°+х+х=180°
2х=40⇒х=20° (∡ОАС=∡ОСА=20°)
∡ОСА=∡С=20°
∡А=∡ОАС+∡∡ОАВ=20°+70°=90°
∡А=90°
Ответ: ∡А=90°; ∡С=20°; ∡В=70°
(360-125-79)/2 = 78
ответ: 78 градусов
По т. Пифагора ac=2
Tga=cb/ac
Tga=2/2=1
По теореме пифагора АС^2=10^2-8^2
АС^2=100-64
AC^2=36
AC=36(в корне )
АС=6
Угол при вершине А в первом равен углу при вершине Б второго треугольника, они равны так как эти треугольники равны, и они накрест лежащие.
Из этого следует, что АЦ парал. БД
Угол при вершине А второго равен углу при вершине Б первого, дальше всё как в первом случае