1) Достроим треугольник до треугольника АСМ, добавив равный ему, где АВ=ВМ, СМ=АС. Тогда СМ=АМ=АС, и треугольник АСМ - равносторонний (т.к. АС=2 АВ).
Все углы равностороннего треугольника равны 60º
∠САВ=60º
АЕ- биссектриса, и ∠ САЕ=∠ЕАВ=∠АСЕ=30º , а ∠ СВА=180º-(60º+30º)=90º
------------------------------
2) В равнобедренном треугольнике АЕС ( по условию)
проведем высоту ( медиану) ЕН.
АН=НС=АВ
В треугольниках ЕАН и ЕАВ
<span>∠НАЕ=∠ЕАВ по условию
</span>АН=АВ
сторона АЕ - общая
Треугольники НАЕ и ЕАВ равны по первому признаку.
<span>∠ ЕНА= ∠ЕНС=90º по построению
</span>Отсюда угол АВЕ=АНЕ=90º
Треугольник АВС - прямоугольный с прямым углом В
Сумма острых углов прямоугольного треугольника равна 90º
<span>∠ ЕАС=∠ЕСА ⇒
</span><span><span>Так как АЕ биссектриса </span>∠ВАС, то ∠ВАС=2∠АСВ
</span><span>∠ АСВ+∠САМ= 3 ∠ АСВ
</span><span>∠ АСВ=90º:3=30º
</span><span>∠ САВ=2∠<span>САВ=60º
-------------------------------
3)
</span></span><span> АЕ=СЕ, следовательно, треугольник АСЕ - равнобедренный, угол САЕ=АСЕ. Достроим треугольник АВС равным ему, где боковая сторона равна АС, а основание равно АВ.
Тогда в нем АЕ=ЕС, и ЕС является биссектрисой угла С.
В новом треугольнике биссектрисы точкой пересечения делятся на равные части ( считая от вершин).
АВ=1/2АС, а основание нового треугольника равно АС, боковые стороны тоже в нем равны.
Так как АС=2АВ, ∠ АСВ=30°, отсюда ∠ВАС=60°.
<em><u>Треугольник АВС - прямоугольный с прямым углом В.</u></em></span>
<span>13. Отрезки МН и РО пересекаются в их середине К. Докажите, что МР параллелен НО. 14. Отрезок ДМ – биссектриса треугольника СДЕ. Через точку М проведена прямая, параллельная стороне СД и пересекающая сторону ДЕ в точке Н. Найдите углы треугольника ДМН, если угол СДЕ равен 68 градусов. 13. Отрезки МР и ЕК пересекаются в их середине О. Докажите, что МЕ параллелен РК. 14. Отрезок АД – биссектриса треугольника АВС. Через точку Д проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке Н. Найдите углы треугольника АДН, если угол ВАС равен 72 градуса.</span>
Можно решить уравнением, а можно так:
1)<C=180°-100°=80°.
2)<B=120°-80°=40°
3)<A=100°-40°=60°
Ответ:<А=60°,<В=40°,<С=80°.
угол С=180-70-80=30гр
EO - перпендекуляр к BC - есть кратчайшее растояние от а до ВС
sin C=sin 30 = 1/2=EO/EC, EC=x
EO=1/2 * x
Формула радиуса описанной около правильного треугольника окружности:
в данной задаче:
Ответ: 2 дм