Пусть длина=а, тогжа ширина=а-4
площадь=ширина*длина
а*(а-4)=96
а²-4а=96
а²-4а-96=0
а=-8 а=12, длина не может быть <0 =>ответ 12
ширина=12-4=8
Тангенс угла в=АС\АВ
5\12=АС/6
АС=30/12=2,5
Острый угол - 56 градусов.
Способов решения задачи - очень много.
Вариант:
AQ перпендикулярен DC. AB || DC как противоположные стороны ромба. Следовательно, QA перпендикулярен AB или угол QAB = 90 градусов.
Отсюда угол BAP =угол QAB - угол PAQ = 90 - угол PAQ = 90 - 56 = 34 град.
Треугольник APB - прямоугольный, сумма его острых углов всегда равна 90 град, то есть
угол BAP + угол PBA = 90
Отсюда искомый острый угол ромба
угол PBA = 90 - угол PAB = 90 - 34 = 56 град.
<span>проведите диагонали в ромбе, они взаимно перпендикулярны, диагональ АС делит угол между двумя высотами пополам, рассмотрим треугольник АРС, угол А=56/2=28, угол С = 180 - 90 -28=62, рассмотрим треугольник АВС, он равнобедренный, угол А = углу С = 62, угол В = 180 -62-62 =56 градусов, отсюда вытекает следствие, что угол между двумя высотами ромба проведенных из вершины тупого угла равен острому углу ромба</span>