На мой взгляд это странное условие (странное в силу отсутствия картинки), может быть расшифровано так: дан прямоугольный треугольник с известной гипотенузой c=4 и известной проекцией a_c катета a на гипотенузу. Требуется найти катеты a, b, проекцию b_c катета b на гипотенузу и высоту, опущенную из вершины прямого угла.
По известной формуле a^2=c·a_c=4·1=4⇒a=2.
b_c=c-a_c=4-1=3; b^2=c·b_c=4·3⇒b=2√3
Наконец, высоту можно найти или как среднее геометрическое a_c и
b_c:
h^2=a_c·b_c=1·3⇒h=√3,
или по формуле (a·b)/c=(2·2√3)/4=√3
1)Решение
Пусть дан ромб АВСД. Диагонали ромба точкой пересечения О делятся пополам и взаимно перпендикулярны, а его стороны равны.
Пусть сторона АВ = х м. Рассмотрим прямоугольный треугольник АОВ.
По теореме Пифагора х^2 = 9+16
х^2 = 25
х = 5 см ; АВ = 5м
2) точно также пишешь только решение вот так
х^2 = 36 +64 = 100
х = 10: АВ = 10 см
Если точу М взять за середину стороны АВ.затем провести отрезки МС и МD то получиться треугольник MCD= треугольник MBC+ треугольник MAD тогда площадь параллелограмма будет равна 38*2=76
площадь равна 3/4 площади треугольника 28*3/4=21
Периметр равен 20см,тогда сторона квадрата равна 20:4=5см.
Строим квадрат с данной длиной