Ответ:
Объяснение: 1) S=∫₋₃⁻¹(-x²-2x+5-(-x²-6x-7))dx+∫₋₁¹(-x²-2x+5-2x)dx=
=∫₋₃⁻¹(4x+12)dx+∫₋₁¹(-x²-4x+5)dx=4(1/2x²+3x)║₋₃⁻¹+(-1/3x³-
-4·1/2x²+5x)║₋₁¹=4·((1/2·(-1)²+3·(-1)-1/2·(-3)²-3·(-3))+(-1/3·1³-2·1²+5·1-
-(-1/3)·(-1)³+2·(-1)²-5·(-1))=4·(1/2-3-9/2+9)+(-1/3-2+5-1/3+2+5)=8+9-2/3=
=16+1/3 (ед²)
2) S=∫₋₁¹(2x+5-x²+2x)dx+∫₁³(x²-6x+12-x²+2x)dx=∫₋₁¹(-x²+4x+5)dx+
+∫₁³(-4x+12)dx=((-1/3)x³+4·1/2·x²+5x)║₋₁¹+((-4)·1/2·x²+12x)║₁³=
=(-1/3+2+5-1/3-2+5)+(-18+36+2-12)=10-2/3+8=17+1/3 (ед²)
Точки пересечения с осью ОХ исходя из чертежа: (0,0) и (3.0) .
Значит, в=3
Для этой формулы есть равенство
считаем правую часть
для такого вида равенства подходит формула
|5-6x|+8>7x
|5-6x|>7x-8
"и" - обозначает совокупность, а не систему
5-6x>7x-8
и
5-6x<8-7x
-13x>-13
и
x<3
x<1
и
x<3
x<3
наибольшее целое =2
<em><u>Ответ: 2</u></em>
Держи ...................................