Графиками обоих уравнений являются прямые, следовательно, две прямые имеют бесконечно много решений при одинаковых коэффициентах K. Приведем оба уравнения к виду уравнения прямой. Получим y=-(2/3)x + 5/3 и y=(a/6)x + 10/6, поэтому -2/3 = a/6, отсюда а =-4.
R=AC/2*sinB
sinB=AC/AB=5/13 (AB²=AC²+BC², AB=13 см)
R=5/(2*5/13)=6,5 см
Задача 1. 1)Найдем объем призмы по формуле V=S•h , где S-площадь основания. Sоснования=1/2аb, где а=6, а b=8. Sосн.=48/2=24 см^2. Т.к. призма прямая, то h=боковому ребру=12. V=24•12=288 см^3.
2)Sполн.=сумме всех площадей поверхности=2Sосн.+S1бок+ S2бок+S3бок. Sосн=24 см^2. Найдем S1бок. Т.к. боковая сторона это прямоугольник, то S=ab, где a-длина, а b-ширина прямоугольника. а=12 см, b=8 см, S1бок=12•8=96 см^2, S2бок.=12•6=72см^2. Чтобы найти S3бок, найдем b по теореме Пифагора: √6^2+8^2=√100=10 см. S3бок=12•10=120см^2. Найдем Sполн.=2•24+96+72+120=336см^2. | Ответ: Sполн=336 см^2, V=288см^3.
Центр симметрии фигуры Если фигура переходит в себя при симметрии относительно некоторой точки, то эта точка называется центром симметрии фигуры. Центр симметрии отрезка – его середина; параллелограмма или параллелепипеда – точка пересечения диагоналей; окружности или сферы – ее центр.