4, по стороне и двум прилежащим к ней углам. (N1O1 = N2O2 = 10 см)
Наййдем второй катет = корень из 26^2-24^2( по т. Пифагора) = корень из 676-576=корень из 100=10 см
найдем площадь. она равна половине произведения катетов S= 1/2*24*10=120 кв см
В треугольнике авс ак - биссектриса, тогда угол вак=углу кас
мк//ав, тогда угол мка = углу вак при параллельных ав и км и секущей ак.
в треугольнике акм угол а=к и акм равнобедренный
1) <A=90°, <ABC=(180°-120°)/2=30° (сумма внутренних углов треугольника
равна 180°). AD=BD. <DAB=30° (треугольник ABD равнобедренный).
<DAC=60° (90°-30°).
<ADC=60°(смежный с <ADB).
DC=AD =AC=6 (треугольник ADC равносторонний). ВС=12.
По Пифагору АВ=√(ВС²-АС²). Или АВ=√(144-36)=6√3.
Ответ: АВ=6√3.
2) <B=90°, <A=(180°-120°)/2=30° (сумма внутренних углов треугольника
равна 180°).<C=60° (сумма острых углов прямоугольного треугольника = 90°, 90°-30°=60°).
Треугольник ВСD равносторонний и ВС=6. ФС=12.
По Пифагору АВ=√(АС²-ВС²). Или АВ=√(144-36)=6√3.
Ответ: АВ=6√3.
3) <C=90°. <B=(180°-120°)/2=30°. <A=60°(сумма острых углов
прямоугольного треугольника = 90°).
<DAB=30° (треугольник DAB равнобедренный).
<CAD=<A-<DAB=60°-30°=30°.
AD=12 (CD - катет против угла 30°).
BD=12 и ВС=18.
АС=√(АD²-СD²)=√(144-36)=6√3.
АВ=√(АС²+ВС²)=√(108+324)=12√3.
Ответ: АВ=12√3.