|sinx|≤1; |4*sinx|≤4; -4+1≤1+4sinx≤4+1; 0≤(1+4sinx)^2≤5
E(y)=[0;5]
2)y=1/(sinx+2)
y1=sinx-ограниченная ф-я; |sinx|≤1; -1+2≤sinx+2≤1+2; 1≤sinx+2≤3
1/3≤1/(sinx+2)≤1; E(y)=[1/3;1]
Решение
Задача решается по формуле классической вероятности P=m/n где
n-общее число вариантов, m- число благоприятных вариантов. Найдем число всех
вариантов. Если на первой карточке 1 то второй могут быть цифры 2, 3, 4, 5
итого 4 варианта. Если на первой карточке цифра 2, то на второй карточке могут
быть цифры 1, 3, 4. 5 итого 4 варианта. Аналогично если на первой карточке
цифра 3 то опять буде 4 варианта, если на первой карточке цифра 4, тоже 4
варианта и если цифра 5 то все равно 4 варианта. Получается что с каждой цифрой
по 4 варианта, всего 20 вариантов. <span>n=20.
Найдем количество благоприятных вариантов. Если на первой
карточке цифра 1 то на второй могут быть цифры 2, 3, 4, 5 все они больше 1.
Получается 4 варианта. Если на первой карточке цифра 2 то на второй могут быть
цифры 1, 3, 4, 5. Из них только три цифры больше 2. Значит 3 варианта. Если на
первой карточке цифра 3, то будет только 2 варианта (если на второй карточке
цифры 4 или 5). Если на первой карточке цифра 4 то только 1 вариант (цифра 5 на
второй карточке) . Если на первой карточке цифра 5 то вариантов нет (все цифры
меньше 5). Итак, благоприятных вариантов всего получается
4+3+2+1=10
m=10
P=10/20=1/2=0,5
<span>Ответ: 0,5</span></span>
140 - 100 процентов
х - 45 процентов
х= 63
Ответ: 63 ученика