<span><em>В решение не уверен))) немного мудрёная задачка... скорей всего, я очень сильно намудрил с вписанными углами, сейчас просматривая записи и начинаю очень сильно сомневаться, что данный угол, именно таким способом можно найти)</em></span>
<span>угол АВС равняется 93 градусам, данный угол лежит на отрезке окружности АС, следовательно, АС = 93 * 2 = 186 ( т.к. угол АВС - вписанный, значит, он будет равняться половине дуги на которую он опирается)</span>
Угол АДС так же лежит на отрезке окружности АС, значит, он будет как и угол АВС равен 93 градусам.
<span>Угол АДС равен 186 : 2 = 93 градуса ( т.к. угол АДС - вписанный, значит, он будет равняться половине дуги на которую он опирается)</span><span> <span>Ответ: 93 градуса
</span></span>
Т.к. углы BCD и BAC равны по свойству касательной и хорды в точку касания, то треугольники BCD и BAC подобны по двум углам. Значит
BC/BD=AC/CD=AB/CB.
Из 1-го равенства получаем BC/4=12/6, т.е. CB=8.
Из 2-го равенства 12/6=(AD+4)/8, т.е. AD=16-4=12.
1) Точка H на вложенном рис. соответствует точке D условия задачи.