АВСD трапеция равнобочная.Пусть AD= b=6,9 дм , BC= a= 5,1 дм
AB= CD = 41 cм = 4,1 дм Найти S трапеции.
S= ((a+b)/2 )·h
Проведём ВЕ ⊥ AD ⇒ BE = h
Рассмотрим Δ АВЕ : АЕ =( b - a ) /2 = ( 6,9 - 5,1)/ 2 = 1,8 /2 =0,9 ( дм) ⇒ AE = 0.9 дм. По т. Пифагора BE²= AB² - AE² = 4,1² - 0,9² =
(4,1 - 0,9 )·(4,1+ 0,9) =3,2 ·5= 1,6 ⇒ BE² = 1,6 ⇒ BE =√ 1,6дм².=
√1600 (cм)² =40 cм= 4 дм
S= ((a+b)/2)·h = ( 6,9+ 5,1 )/2 ·4 = 12/2·4= 6·4=24 (дм)²
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
∠КОА=90-∠КАО=90-30=60°.
Решаем задачу по теореме синусов:
АК/sinКОА=КО/sinKAO⇒
KO=AK*sin30/sin60=(33√3*1/2)/√3/2=33√3*2/√3=66мм.
АО/sin90=KO/sinKAO⇒
AO=KO*sin90/sinKAO=66/(1/2)=132мм.
радиус вписанной окружности=(2корень из 2)/2=корень из 2
С= 2п*корень из 2
радиус описанной окружности =(2корень из 2)/корень из 2=2
С= 2п*2=4п
Отношение длин =( 2п*корень из 2)/4п=(корень из 2)/2