Поскольку у параллелограмма КMNP противоположные стороны параллельны и равны, противоположные углы равны, значит
КР=MN и КР║MN
КМ=NР и КМ║NР
∠К=∠N
∠М=∠Р
Рассмотрим треугольники КВР и МNА.
KB=NA - это дано по условию задания.
КР=MN - это мы выяснили выше
∠K=∠N - это мы выяснили выше
А эти равности дают нам право утверждать, что треугольник КВР=треугольнику МNА.
А это означает, что BP=MA.
Также из равности треугольников можно утверждать, что
∠KBP=∠NAM
∠BPK=∠AMN.
Сумма мер двух смежных углов равна<span> 180°, значит
</span>∠MBP+∠KBP=180°, отсюда ∠MBP=180° - ∠KBP
∠PAM+∠NAM=180°, отсюда ∠PAM=180° - ∠NAM
Поскольку ∠KBP=∠NAM, а значит
∠MBP=∠PAM
Поскольку ∠BPK=∠AMN и ∠KMN=∠KPN, тогда
∠KMA=∠NPB, так как
∠KMN=∠KMA+∠AMN, отсюда ∠KMA=∠KMN-∠AMN
∠KPN=∠BPK+∠NPB, отсюда ∠NPB=∠KPN-∠BPK
KM=KB+МB, отсюда MB=KM-KB
NP=NA+AP, отсюда AP=NP-NA
Поскольку KM=NP, а KB=NA, значит
MB=AP.
Поскольку KM║NP, то и MB║AP.
Получаеться, мы выяснили, что
BP=MA
∠MBP=∠PAM
∠KMA=∠NPB
MB=AP
MB║AP.
Из всего этого мы можем сделать вывод, что <span>АМВР </span>- это параллелограмм, поскольку у него противоположные стороны и углы равны.
Ты не уточнил какой треугольник, но если он прямоугольной тогда это решение тебе подойдёт
1)180:3=60 следовательно
L=60
M=60
N=60
2)360-120-100=140 следовательно
NOL=140
(x+4)^2+y^2=4^2
(x+4)^2+y^2=16