А)r=ab/2=12 см
б) проведем высоту cl , из прямоугольного треугольника cld
ld²=cd²-ab²=25²-24²=49
ld=7
если в четырехугольник вписана окружность,то сумма его противоположных сторон равна .
ab+cd=bc+ad
bc+ad=49
ad=bc+ld
bc+bc+ld=49
2bc+7=49
bc=21
ad=49-21=28
в)проведем радиус qf ,точка f лежит на прямой cd
qf является высотой т. к. касательная к окружности перпендикулярна радиусу.
отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность
kc=cf=bc-r=21-12=9
ed=ef=ad-r=28-12=16
qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу
qf²=16*9
12²=16*9
144=144
следовательно треугольник cdq прямоугольный
Длина окружности вычисляется по формуле:
с=2ПR,
где c - длина окружности
R - радиус окружности
выразим R:
R= c/2П=36П/2П= 18см
диаметр в 2 раза больше окружности, значит диаметр(d)=2R=36см
АВD и EBC вся сложность в углах
по условию углы ебд=абс
ебд=евс+сбд
абс=абд+сбд
евс+сбд=абд+сбд
евс=абд
Преведём диагональ, по т. Пифагора
Тогда радиус описанной окружности
Длина окружности
Ответ:
Расстояние от вершин до симетрии данной вершины через точку равны.