найти объем пирамиды, если в правильной четырехугольной пирамиде сторона основания равна 8 см,а двугранный угол при основании пирамиды равен 60 градусов
пирамида правильная
в основании квадрат
вершина S проецируется в т. М -пересечение диагоналей - центр квадрата
МО=1/2AD=8/2=4
тогда SM=MO*tg60=4*√3
тогда объем пирамиды V=1/3*Sосн* h=1/3*AD^2*SM=1/3*8^2* 4√3=
=256√3 / 3 или 256 / √3
Ответ =256√3 / 3 или 256 / √3
Мы такую же таблицу делали
Прилагаю листочек.......................................
Прямоугольнгик АВСД, АД=ВС=6, АС=ВД=10, диагонали прямоугольникам в точке пересечения делятся пополам. ВО=СО=10/2=5, периметр ВОС=ВО+СО+ВС=5+5+6=16
а) BC = √ ( CD^2 - BD^2 ) = √ ( (BD/cosBDC)^2 - BD^2 ) =
= BD √ ( 1/(cosBDC)^2 - 1 ) = 4√ ( 1/(cos60)^2 - 1 ) =
= 4√3 см
6 < BC < 7
б) длина медианы PD= √ [ (BC/2)^2 +BD^2 ] = √ [ (4√3/2)^2 +4^2 ] = 4√ [ (√3/2)^2 +1 ] = 2√7 см