Есть треуг. равно и угол при вершине = 120 => что углы при основании по 30
боковую сторону можно найти через косинус 30 градусов
cos30° =
x =
= b/
∠ADC = ∠ACD = ∠1, так как ΔADC равнобедренный, тогда
∠DAC = 180° - 2· ∠1
∠ВСЕ = ∠ВЕС = ∠2, так как ΔВАС равнобедренный, тогда
∠ЕВС = 180° - 2 · ∠2
∠DAC + ∠EBC = 180° как внутренние односторонние углы при пересечении параллельных прямых AD и ВЕ секущей АВ.
180° - 2 · ∠1 + 180° - 2 · ∠2 = 180°
360° - 2(∠1 + ∠2) = 180°
2(∠1 + ∠2) = 180°
∠1 + ∠2 = 90°
∠DCE = 180° - (∠1 + ∠2) = 180° - 90° = 90°, значит
DC⊥CE
Надо 8*6= 48
это и будет площадь <span>параллелограмма
</span>
АЕД=ВЕД по двум сторонам и углу между ними