Вектор АВ (0+6;5-1) = (6;4)
Вектор АD (0+6;-8-1) = (6;-9)
Если эти вектора пригодны для построения на них прямоугольника, то угол меж ними 90 градусов и скалярное произведение равно 0
AB * AD = 6*6-4*9 = 36-36 = 0
Хорошо :)
Осталось доказать, что точка С тоже принадлежит прямоугольнику
Сначала найдём среднюю точку на диагонали ВД
О ((0+0)/2;(5-8)/2) = (0;-3/2)
А теперь среднюю точку на диагонали АС
O((-6+6)/2;(1-4)/2) = (0;-3/2)
Совпало :)
ВОДЫ СУШИ<span> - воды рек, озер, водохранилищ, болот, ледников, а также подземные воды. где именно ты живешь, посмотри по карте названия рек,озер.
</span>
<AKB+<BKC=180°, так как АКС - развернутый угол.
Значит половины этих углов в сумме равны 90°(разделим обе части уравнения на 2), то есть <MKB+<BKP=90° (так как КМ и КР - биссектрисы <AKB и <BKC соответственно). Но <MKB+<BKP=<MKP, следовательно, <MKP=90°.
Что и требовалось доказать.
8.2. R=a/ корень из 3. а=10* корень из 3. Высота равностороннего треугольника h=a корней из 3/2=10 корней из 3* корень из 3/2=15см.
9. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному. Тогда MN/AC=BN/BC. Пусть BN=x, тогда
BC=x+28. 13/65=x/x+28. 13*(x+28)=65x. 13x+364=65x. 52x=364. x=7
10. <EAD=<BEA (внутренние накрест лежащие).Но АЕ- биссектриса, поэтому <BAE=<BEA. Треугольник АВЕ равнобедренный и АВ=ВЕ.
Аналогично и треуг. CDE тоже равнобедренный и СЕ=СD . Но АВ=СD(как противоположные стороны параллелограмма). Значит и ВЕ=СЕ. Ч.т.д.
В ∆ABO; угол ABO= 90°
Можем найти сторону ОВ за теоремой Пифагора
ОВ²=25²-20²
ОВ²=625-400=225
ОВ²=15²
ОВ=15
ОВ=OC=15 — как радиусы
B ∆ACO; угол ACO=90°
Можем найти сторону AC за теоремой Пифагора
AC²=25²-15²
AC²=625-225=400
AC²=20²
AC=20
Ответ:OC=15,AC=20