Гипотенуза будет равна 32. (Квадрат гипотенузы равен сумме квадратов катетов)
Если боковая сторона х /мм/, то основание ВА равнобедренного треугольника АВС равно (х-200) /мм/
Периметр - это сумма длин всех сторон треугольника. Составим и решим уравнение.
х+х+(х-200)=2200,
3х-200=2200
3х=2400
х=2400:3; х=800, значит, ВС = АС =800 мм, тогда ВА = 800-200=600/мм/
Ответ ВА =600 мм
ВС = 800 мм
АС = 800 мм
Удачи!
Плоскости α и β пересекаются по линии m.
Точки А и В лежат в одной плоскости (α). Их можно соединить и продолжить до пересечения с m в точке D.
BD – <em><u>линия пересечения</u> плоскости АВС с плоскостью α</em>.
Точки D и С лежат в одной плоскости (β). Соединив их, получим СD –<em><u>линию пересечения</u> плоскости АВС с плоскостью β.</em>
Точки А, В, С, D лежат в плоскости АВСD.
BD и CD – <em>линии пересечения плоскости АВС с плоскостями α и </em>β<em>.
---------
Примечание: К вопросу с задачами, в которых есть упоминание о рисунке, не следует забывать этот рисунок прикладывать. </em>
Н1
1) угол А = углу В(св-ва трапеции) => угол В = 75
2) угол В + угол Д= 180=> угол Д= 180 - угол В=> 180-75=105
3) угол А + угол С = 180=> угол С= 180- угол А=> 180-75=105
Ответ: угол В = Угол В = 75
Угол Д=угол С = 105
Н2
1) СД= половина СА (катет, лежащий напротив угла 30 гр = половине гипотенузы) => СА= 2СД=> СА =4•2=8 см
2) СА=ДВ (свойства прямоугольника) => ДВ=8 см
Н4
1) Угол А=углу С(свойства ромба) => Угол С=60 гр
2) угол ВСО=60гр:2, т.к. АС - биссектриса угла С(свойства ромба)=> ВСО=30 гр
3) угол СОВ=90 гр, т.к. АС перпендикулярна БД(свойства ромба)
4) угол СОВ+ угол ВСО+ угол СВО=180 гр(сумма внутр углов треугольника) => угол СВО =180- угол ВСО- угол СОВ=180-90-30=60
Ответ: угол СВО=60
Угол ВСО=30
Угол СОВ =90