В треугольнике ABC проведённые медианы AN и BK пересекаются в точке M. Определи площадь
Если что то непонятно - пиши
BM = MC = BC/2 = 5
найдем AM составив уравнение по теореме косинусов
MC² = AM² + AC² − AM·AC·cos(∠MAC)
5² = AM² + (3√2)² − AM·(3√2)·(√2)/2
AM = 7
S(AMC) = (1/2)·AM·AC·sin(∠MAC) = 21/2
<span>S(ABC) = 2S(AMC) = 21 (медиана делит треугольник на два равновеликих)
должно быть так это правильно </span>
1) Пусть т.Д - пересечение АС и ВР. ВД=ДО по условию, значит в треугольнике ВСО: ВС=СО. Но СО=ВО=r, значит треугольник ВСО равносторонний, значит угол ОВС=60, значит угол АВС=2*ОВС=2*60=120.
Во вписанном 4-угольнике сумма противоположных углов равна 180. Значит АРС=180-АВС=180-120=60.
Углы ВСР и ВАР = 90, как опирающиеся на диаметр.
2) Диаметр, перпендикулярный хорде, делит ее и стягиваемые ею дуги пополам. Значит дуги АВ=ВС=угол ВОС=60
дуги АР=СР=угол СОР=180-ВОС=180-60=120