Обозначим трапецию АВСD, среднюю линию МК, центр вписанной окружности О; радиус, проведденный в точку касания окружности с боковой стороной АВ – ОТ.
<span>Трапеция равнобедренная, следовательно, центр вписанной окружности лежит в точке пересечения средней линии и срединного перпендикуляра к обоим основаниям трапеции. </span>
<span>МО=ОК=4:2=2 </span>
<span>Радиус, проведенный в точку касания, перпендикулярен касательной. </span>
<span>∆ МОВ - прямоугольный. </span>
МК и АD параллельны, АВ - секущая, углы ВМО=ВАН=30°
Из ∆ ВОМ радиус ВО=МО•sin30°=2•0.5=1см
<span>Формула длины окружности </span>
<em>l=2πr</em>
<span><em>l</em>=2π•1=<em>2π</em> см</span>
Держи, приятель. Думаю разберешься какое решение к какому.
Средняя линия трапеции равна полусумме оснований. 10+14=24, 24:2=12.
Катет лежащий против угла в 30 = 1/2 гипотенузы
обозначим один катет х, другой у
составляем систем уравнений
1/2 * х * у = 512√3
х² + у² = 4х²
из второго уравнения выражаем у=х√3 и подставляем в первое
х²√3=1024√3
х=32 - один катет
у=32√3 - другой катет
Обозначим пирамиду МАВС. СВ=6 см
<span>Высота ВН перпендикулярна плоскости основания, поэтому треугольники, образованные боковыми ребрами, высотой и проекциями ребер, прямоугольные. В данном случае отношение их сторон из троек Пифагора (5:12:13), поэтому проекции боковых ребер равны 5 ( можно и по т.Пифагора найти). </span>
<span>АН=СН=ВН </span>⇒ <span>основание высоты МН пирамиды является центром описанной окружности ∆ АВС с радиусом, равным 5, </span>⇒
<span> гипотенуза АВ=2R=10 см. </span>
<span>По т.Пифагора ( или из отношения СВ:АВ=3:5) находим АС=8 см, это второй катет ∆ АВС. </span>