Не хватает рисунка к задаче
<u>Диагонали трапеции ABCD перпендикулярны и не равны</u> - но для решения задачи это не важно.
А важно то, что точки K, L, M и N - середины сторон трапеции ABCD
Диагональ МК четырехугольника KLMN- средняя линия трапеции ABCD.
<u>Средняя линия трапеции равна полусумме оснований</u>.
МК=(15+7):2=11см
----------------------------------------
<u>Возможно, нужно найти диагональ LN, а не КМ.</u>
Тогда перпендикулярность диагоналей важна для решения задачи ( для чего-то она ведь дана ).
Стороны четырехугольника параллельны диагоналям и потому углы его - прямые (диагонали пересекаются под прямым углом).
Черырехугольник KLMN - прямоугольник, и диагонали в нем равны.
Поэтому LN=МК=11 см
касается, если С находится на расстоянии R, значит R=2, тогда (х-1)²+(у-2)²=2² -уравнение
<span>Четырехугольник АВСD диагональю АС поделен на два прямоугольных треугольника, в одном из которых известны катеты. АС - общая гипотенуза. </span>
<span> В ∆ АВС отношение катетов 6:9=3:4, что указывает на то, что ∆ АВС - египетский. <em>АС=10 </em>( проверьте по т.Пифагора).</span>
Из второго треугольника:
<span> АС=√(АD</span>²<span>+DC</span>²<span>) 100=√(х</span>²<span>+9х</span>²<span>)</span>
10х²=100
<span>х</span>²<span>=10, <em>х=√10 - </em>Верным является вариант<em> В. </em></span>