По неравенству треугольников , в треугольнике
, в треугольнике
;
Вычтем
Дана <span>правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами </span>L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.
Sоснов.=(12^2*3^(1/2))/4=36*3^(1/2) степень 1/2 это квадратный корень.
ABC основание, АК высота,соедини вершину(S) с точкой К, SO перпенд. ОК.
Cтоп.Высота основания не может быть 15.Посмотри условие.
<span>В ромбе АВСD сторона АВ = 3 см, ∠АВС = 120. Найдите скалярное произведение векторов АВ и АD</span>