Поскольку АВС- равнобедренной прямоугольный треугольник, ∠CAB=45°.
Большая диагональ вписанного ромба- его биссектриса, и ∠DAB=α=<span>45/2=22.5°
Сторона ромба AE=AF/cos</span>α
AF=AD/2
AD=AB/cosα
cos22.5°=(√(2+√2))/2
Из условия, AB=<span>(2+√2)/5
Значит,
</span>
<span>
</span>
Кратчайтшее расстояние от цента окружности до двух одинаковых по длине хорд - равны и являются перпендикулярами , опущенными на середину хорды. Значит четырехугольник, вершинами которого являются точки пересечения хорд, цент окружности и основания перпендикуляров из центра окружности на хорды - квадрат А сторона этого квадрата равна (7+3)/2-3=2 см