Сумма трех углов любого треугольника - 180°. В прямоугольном один угол равен 90°, то есть является прямым. Значит, сумма двух оставшихся 180° - 90° = 90°. Острый угол - это угол, меньший, чем 90°. Значит, если сумма двух углов равна 90°, то каждый из них меньше этой суммы, то есть острый.
Решение.

В ΔABC (см. рисунок) имеем AC = c sin α, BC = ccos α, BL = x, AL = c - x, l - биссектриса угла C. Так как . Теперь по теореме синусов получаем . Окончательно получим

Итак, искомая биссектриса прямого угла равна .
Т.к. ΔАВС = ΔABD, то АС = BD, CB = AD, ∠CAO = ∠OBD.
1) В ΔCBD и ΔDAC:
CD — общая
АС = DB, AD = CB (из условия).
Таким образом, ΔCBD = ΔDAC по 3-му признаку равенства треугольников, таким образом, ∠CDB = ∠DCA.
2) В ΔАОС и ΔDOB:
АС = BD, ∠CAO = ∠OBD, ∠CDB = ∠DCA.
Таким образом, ΔАОС = ΔDOB по 2-му признаку, откуда АО = ОВ. Следовательно, отрезок BD делит отрезок АВ пополам, что и требовалось доказать.
Подробнее - на Znanija.com - znanija.com/task/22120797#readmore