(3)1 задача на картинке
(4) 1 задача : Обозначим меньшую высоту параллелограмма ABCD, опущенную из точки B на большее основание AD как BK.
Найдем значение катета прямоугольного треугольника ABK, образованного меньшей высотой, меньшей стороной и частью большего основания. По теореме Пифагора:
AB2 = BK2 + AK2
82 = 92 + AK2
AK2 = 82 - 81
AK = 1
Продлим верхнее основание параллелограмма BC и опустим на него высоту AN из его нижнего основания. AN = BK как стороны прямоугольника ANBK. У получившегося прямоугольного треугольника ANC найдем катет NC.
AN2 + NC2 = AC2
92 + NC2 = 152
NC2 = 225 - 81
NC2 = √144
NC = 12
Теперь найдем большее основание BC параллелограмма ABCD.
BC = NC - NB
Учтем, что NB = AK как стороны прямоугольника, тогда
BC = 12 - 1 = 11
Площадь параллелограмма равна произведению основания на высоту к этому основанию.
S = ah
S = BC * BK
S = 11 * 9 = 99
Ответ: 99 см2<span> . </span>
Увеличить на некую величину: 2*число Пи = 6,28 см.
Длина экватора L=2*П*R, где К - радиус Земли.
Когда радиус увеличится на 1 см, он станет равен (R+0,01)метра.
Тогда длина экватора станет:
L1=2*П*(R+0,01)
из полученной длины вычтем старую:
L1-L=2*П*(R+0,01)-2*П*R=0.02*П метров или 6,28 см.
Катеты равны, так как острые углы прямоугольного треугольника равны 45 градусам
пусть кактет-х, тогда используя теорему Пифагора получим:
2х^2=8^2
2х^2=64
х^2= 32
х=√32
√32- катеты прямоугольного треугольника
площадь прямоугольного треугольника равна половине произведения его катетов:
S= (√32*√32) : 2
S= 32:2
S=16
16 - площадь прямоугольного треугольника
ответ: 16
<span>пересекающая стороны МN (не MK наверно) и NK в точках А и В соответственно </span>
<span>AB/MK = 2/(2+1) (треугольники ANB и MNK подобны; медианы точкой пересечения (точка O) делятся в отношении 2 к 1, считая от вершины) </span>
<span>MK = (3·AB)/2 = 18 (см)</span>
Т.к. треугольник - равнобедренный, то углы при основании равны, соответственно угол при вершине =
180-(80+80)=180-160=20