Длина второго катета равна
Периметр основания равен P = 10 + 8 + 6 = 24
h = Sбок/P = 480 / 24 = 20 см
V = Sосн * h = 1/2 * 8 * 6 * 20 = 480 см^3
Длина вектора вычисляется по формуле |a|= √(x2 - x1)² + (y2 - y1)²
|a| = √ (1 - 4)² + (1 + 3)² = √3² + 4² = √25 = 5
Ответ: |a| = 5 (над а стрелочку поставить надо)
Так как не известен угол наклона боковой стороны, то проще всего построить треугольник, когда боковая сторона горизонтальна.
1) Проводим горизонтальный отрезок произвольной длины.
2) В любой её точке восстанавливаем перпендикуляр длиной, равной заданной высоте. Это первая вершина треугольника.
3) Из конца высоты раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой. Получаем вторую вершину треугольника.
4) Из неё раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой и получаем третью вершину треугольника.
Можно скомбинировать графический и аналитический методы построения.
Отношение высоты к боковой стороне - это синус угла при вершине.
Найти по синусу угол, разделить его пополам.
Провести перпендикуляр, от его конца отложить полученное значение половины угла при вершине и провести отрезки в обе стороны от перпендикуляра. На них отложить длины боковых сторон и соединить основание.
1)а — данная прямая.
Возьмем на прямой а точки А, В, С. При движении они перейдут в точки А1, В1, Q соответственно, причем АВ=А1В1, ВС=ВА и АС=А1C1. Необходимо доказать, что А1, В1, С1 лежат на одной прямой.
A1C1=A1B1+B1C1. Такое равенство верно, если все три точки — лежат на одной прямой; иначе по неравенству треугольника А1C1 < А1В1+В1С1. В силу произвольного выбора точек А, В и С доказательство справедливо для любых других точек, таким образом, движение переводит прямую в прямую.