Ответ:
P=12+6+6=24
Объяснение:
катет RD является половиной гипотенузы, значит гипотенуза RQ=12
По теореме Пифагора можно найти сторону DQ
-=144-36=6
P=12+6+6=24
Всё решено правильно, учитель если ошибся, то скажи, что это не прямоугольник - это параллелограмм.
Надеюсь я помог:)
У 24-рёхугольника 24 угла.
Дано : параллелограмма MNKF ( MF | | NK , MN | | FK ) , MO =OK , O ∈[AB] , A ∈ [NK] ,B∈[MF] .
---------------------------
док. MAKB параллелограмма
Рассмотрим ΔMOB и ΔKOA :
они равны по второму признаку равенства треугольников , действительно:
∠MOB=∠KOA(вертикальные углы) ;
∠OMB =∠OKA(накрест лежащие углы) ;
MO =OK (по условию) .
Из равенства этих треугольников следует, что MB = KA, но они и параллельны
MB | | KA (лежат на параллельных прямых MF и NK) .
Значит MAKB параллелограмма по второму признаку(если противоположные стороны четырехугольника равны и параллельны то четырехугольник параллелограмма) .
Площадь сегмента можем найти как разность площадей сектора и треугольника. Площадь сектора равна пи*R^2*135/360=(3*пи*R^2)/8. Площадь треугольника равна 1/2*R*R*sin(135)=R^2*кореньиздвух/4, тогда искомая площадь равна (3*пи*R^2)/8- R^2*кореньиздвух/4