1.Д\П прямая BH, ABH-р\б треугольник ( биссектриса делит равнобедренный треугольник) Угол ABO= Углу BHD при BC пар. AD и секущей BH, угол ABO=CBO, ABO=BHD ( при биссектрисе BO) , значит CBO=BHA , следовательно ABH р\б треугольник (биссектриса р\б треугольника это медиана и высота) , следовательно угол AOB=90 градусов
трикутник АВС, АВ=ВС=х, АС=х-9, АВ+ВС+АС=48=х+х+х-9, 48=3х-9, 3х=39, х=13=АВ=ВС, АС=13-9=4
<span>Нарисуем равнобедренную трапецию.</span> Обозначим ее вершины АВСD.
Опустим из вершины В высоту Вh на основание АD.
Получился <span>равнобедренный прямоугольный треугольник ВhD</span>, так как диагональ ВD образует с основанием угол 45 градусов. .
<span>Катеты этого треугольника равны 8</span>, так как гипотенуза в нем 8√2.
<span>Продлим основание ВС.</span>
Из вершины D основания АD возведем перпендикуляр DН до пересечения с продленной ВС.
<span>Рассмотрим прямоугольник ВhDН</span>
В нем СН равен отрезку Аh на основании трапеции, так как АВ=СD и Вh=НD.
Высота в нем равна основанию.
Отсюда <span>площадь этого квадрата ВhDН равна площади трапеции АВСD.</span>
<span>Площадь</span> квадрата <span> ВhDН =</span>
S= Вh* hD=8²=64
S трапеции=64 ед²
Все в фотографии ) надеюсь поможет )