1) Строим данный ∠А, на одной из сторон откладываем сторону АВ.
Дальше придется рассмотреть различные случаи.
2) Пусть ∠А=90° (фото1). Если отрезок ВС будет короче отрезка АВ, то такой треугольник не существует. Пусть ВС>АВ, тогда циркулем радиуса R=ВС, строим окружность с центром в точке В. Окружность пересечет другую сторону ∠А только один раз в точке С. Одно решение.
3) Пусть ∠А>90°, тупой угол. Снова воспользуемся циркулем. Возможны случаи:
ВС<АВ, Решений нет: окружность не пересечет другую сторону ∠А.
ВС>АВ, будет одно решение.
4) Пусть ∠.А<90°, острый угол.
Тут будут разные случаи в зависимости от длины ВС:
а) ВС1⊥АС1, одно решение;
б) АС1<ВС3=ВС4<АВ, пара решений ( есть на рис 3: ΔАВС3 и ΔАВС4, у них ВС3=ВС4).
в) ВС2≥АВ одно решение на фото.
.
Оскільки це прямий циліндр то при осьовому перерізі утворюється прямокутний чотирикутник. діагональ осьового перерізу нахилена до площини осови під кутом 60 градусів то з цього випливає що інші кути будуть30 і 90-градуів.
Як ми вже знаємо напроти кута 30 градусів лежить катет у двічі менший за гіпотенузу: 20/2=10-діаметр основи.
Нам потрібно знайти радіус тому 10/2=5(см)-радіус основи циліндра.
(Тільки накресліть правильно рисунок)
<span>Объем пирамиды равен одной трети произведения площади
основания на высоту. Высота пирамиды задана, значит надо найти площадь
основания. Применим формулу Герона S =корень из р(р-а)*(р-b)*(p-c); где р – полупериметр треугольника, р
= (20+21+29)/2 = 35; а, b,
c –
длина сторон треугольника. Тогда <span>S = корень из 35(35-20)(35-21)(35-29) = корень из 35*15*14*6
= корень из 44100 =210. </span>Объем пирамиды V=210*10/3 = 700</span>