Дано: сторона основания а = 3 см, угол α = 30°.
Находим высоту h основания:
h = a*cos30° = 3√3/2.
Проекция бокового ребра на основание равна (2/3)*h = (2/3)*(3√3/2) = √3.
Высота Н пирамиды равна:
Н = ((2/3)*h)*tgα = √3*(1/√3) = 1 см.
Площадь So основания равна
So = a²√3/4 = 3²√3/4 = 9√3/4 ≈ <span>
3,897114 см</span>²<span>.
Периметр основания Р = 3а = 3*3 = 9 см.
Находим апофему А, проекция которой на основание равна (1/3)h.
</span>(1/3)h = (1/3)*(3√3/2) = √3/2 см.<span>
A = </span>√(H² +( (1/3)h)²) = √(1² + (√3/2)²) = √(1 + (3/4)) = √7/2 ≈<span> <span>1,322876 см.
</span></span><span>Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*9*(</span>√7/2) = 9√7/4 ≈ <span><span>5,95294.
Площадь S полной поверхности пирамиды равна:
S = So + Sбок = (</span></span>9√3/4) + (9√7/4) = (9/4)(√3 + √7) ≈ <span><span>9,198002.
Объём V пирамиды равен:
V = (1/3)So*H = (1/3)*</span></span>(9√3/4)*1 = (3√3/4) ≈ <span><span>1,299038 см</span></span>³.
<span>Значок вектора писаться не хочет. Поймёшь? </span>
<span>1. Из точки(например, В) задай вектора ВА=a, ВС= b, ВВ1=c. </span>
<span>2. Вырази вектора ВМ и В1С через вектора a, b, c. Для проверки: ВМ=a + 1/2b + 1\2c, В1С=b - c </span>
<span>3.Найди косинус угла через скалярное произведение векторов: </span>
<span>вектора ВМ*В1С= длина ВМ*длина В1С * cos угла. </span>
<span>* это пусть будет знак умножения. </span>
<span>ВМ*В1С= (a + 1/2b + 1\2c)*(b - c)= ab+ 1/2b( "в" квадрате) + 1/2bc - ac - 1/2bc - 1/2c( "с" в квадрате). Т.к. вектора "а", "b" и "с" ортогональны, то их произведение равны нулю. </span>
<span>Остаётся: = 1/2b( "в" квадрате) - 1/2c( "с" в квадрате) = 1/2*1 - 1/2*1 = 0 </span>
<span>"в" квадрате = 1, "с" в квадрате =1 </span>
<span>4. Если скалярное произведение ВМ*В1С = 0, это значит, что и cos угла = 0. </span>
<span>Отсюда следует, угол будет 90 градусов. </span>
<span>Длины вектора "ВМ" и "В1С" даже нет нужды вычислять.</span>
Ответ: №402. В₁C=1 см. №403. а)ММ₁=8 б) КК₁=7
Объяснение: №402. АС ∩ А₁С=С ⇒ существует пл. АА₁С, проходящая через АС и А₁С. В∈ АС, В₁ ∈А₁С ⇒ВВ₁ ∈пл.АА₁С.
ΔАА₁С ≅ ΔВВ₁С по 2-м углам (∠С-общий, ∠АА₁С=∠ВВ₁С= =90° т.к. АА₁ ⊥α и ВВ₁ ⊥α, а АВ ∈α) ⇒В₁С:А₁С=ВВ₁:АА₁. Пусть ВС=х тогда: х:(3+х)=3:12, 12х=9+3х,9х=9,х=1.
Ответ: ВС=1 см
№403 а)АВВ₁А₁- трапеция, т.к. АА₁⊥ВВ₁ ⇒АА₁║ВВ₁, АВ ∦ А₁В₁.
ММ₁ ║АА₁, АМ = МВ по условию⇒ по теореме Фалеса
А₁М₁ = М₁В₁ ⇒ ММ₁- средняя линия трапеции, М₁М= (АА₁+ВВ₁):2=(6+10):2=8.
Ответ: ММ₁=8
б)АК:КВ=1:3 по условию.
Пусть АК=х, тогда КВ=3х, АВ=4х, АМ=2х. КК₁ ⊥α ⇒КК₁║АА₁ и
АК:АМ=1:2. По теореме Фалеса А₁К₁:К₁М₁=1:2 ⇒ КК₁- средняя линия трапеции АММ₁А₁, значит КК₁=(АА₁+ММ₁):2=(6+8):2=7.
Ответ6 КК₁=7
Это когда люди получали землю и право на владение холопами, это передавалось по наследству