1) Рассмотрим треугольник ABC - равнобедренный.
Углы при основании равны: угол BAC= угол CBA. Раз равны углы, значит равны и их косинусы:
2) Рассмотрим треугольник ABH - прямоугольный.
угол HBA = угол CBA
Видно, что cos(BAH)=sin(HBA). Найдем синус:
т.к. в равнобедренном треугольнике углы при основании - острые, и косинус угла положительный, значит и синус этого же угла положительный. По основному тригонометрическому тождеству найдем синус:
Ответ: cos(BAH)=1/5=0.2
Существует, это 24-угольник.
S=a*h тк высота в 4 раза меньше стороны к которой она проведена то h/4=a
S=a*a/4=16
a^2=64
a=+-8 (- откидываем)
первая сторона =8 высота h=8/4=2 вторая сторона b=(28-16)/2=6
Задача не сложная на знание теоремы Пифагора,смотри во вложения
Дано: АВСD - параллелограмм, АС=ВD
Доказать: АВСD - прямоугольник.
Доказательство: В параллелограмме диагонали точкой пересечения делятся пополам. Т.к. диагонали равны, то ВО=ОС=АО=ОD (смотри рисунок).
ΔАВО и ΔОСD равнобедренные.
АВ=СD, ВО=ОС, АО=ОD ⇒ ΔАВО = ΔОСD (по трем сторонам)
Значит ∠ОВА=∠ВАО=∠ОСD=∠CDО=α.
ΔВОС и ΔАОD равнобедренные
ВС=АD, ВО=ОА, СО=OD ⇒ ΔВОС = ΔАОD (по трем сторонам)
Значит ∠CBO=∠BCO=∠OAD=ODA=β
∠СВА=α+β
∠ВАD=α+β
∠АDС=α+β
∠DСВ=α+β
В четырехугольнике сумма всех углов 360°.
∠СВА+∠ВАD+∠АDС+∠DСВ=(α+β)+(α+β)+(α+β)+(α+β)=4(α+β)=360°
4(α+β)=360°
α+β=360°:4
α+β=90°
∠СВА=α+β=90°
∠ВАD=α+β=90°
∠АDС=α+β=90°
∠DСВ=α+β=90°
Все углы в параллелограмме АВСD прямые, следовательноа АВСD – прямоугольник.