Середина АВ (-1.5 ; 3)
Длина отрезка равна 5
Ответ:
4,8
Объяснение:
1) Продолжим BO до пересечения с AC в точке F. Т.к. все высоты треугольника пересекаются в одной точке, то BF - высота и, значит, искомое расстояние от О до АС равно OF.
2) Из прямоугольного треугольника OBD по теореме Пифагора OB=10(ОВ=корень из ОА^2=OD^2=корень из 100=10.
3) Т.к. треугольники OAF и OBD подобны (по двум углам), то OF/OA=OD/OB, т.е. OF/8=6/10. Отсюда OF=(8*6)/10=4,8.
Sнижнего=0,8²=0,64 (см²)=S₁
Sверхнего=1,2²=1,44 (см²)=S₂
V=1/3*h(S₁+√(S₁*S₂)+S₂)=1/3*1.5(0.64+√(0.64*1.44)+1.44)=0.5(2.08+√0.9216)=0.5(2.08+0.96)=0.5*3.04=1.52(см³)
<span>Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
</span>
Соответственно, в нашем случае, сторона AC общая для обоих треугольников и прилегающие к ней углы обоих треугольников равны по условию (угол BAC = угол DCA и угол DAC = угол BCA)
Соответственно треугольники ABC и CDA равны