Думала, думала и надумала)
1. Рассмотрим ΔAOC и ΔBOC: ∠AOC=∠BOC (по условию), AO=OB (по условию), CO - общая сторона. ΔAOC=ΔBOC (по двум сторонам и углу между ними), следовательно, CB=CA.
2. Рассмотрим ΔCQA и ΔCQB: CQ - общая сторона, CB=CA (из равенства выше), ∠BCQ=∠ACQ (CQ - биссектриса ∠C). ΔCQA=ΔCQB (по двум сторонам и углу между ними), следовательно, AQ=BQ ,∠ABC=∠BAC / что и требовалось доказать.
Здесь получается довольно интересный чертёж) Диагональ одновременно является высотой. получается два прямоугольных треугольника, в котором углы 30 и 60 градусов. Мы знаем, что сторона, лежащая напротив 30 градусов, равна половине гипотенузы, поэтому эту сторону напротив 30 градусов отмечаем как х, а гипотенузу как 2х. Получается 2х+2х+х+х=72, 6х=72, х=12. Значит, две стороны по 12 см и две по 24 см)
Ответ: 12 см, 12 см, 24 см, 24 см.
Т.к. диагональ АС перпендикулярна стороне СЕ, получаем прямоугольный треуг-ик АСЕ. Рассмотрим его. Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим неизвестный угол ЕАС:
<EAC=90-<AEC=90-45=45°
Т.е. прямоугольный АСЕ - равнобедренный, т.к. углы при его основании АЕ равны. АС=ЕС.
Высота СН равнобедренного треугольника, проведенная к основанию, является также медианой. Значит АН=ЕН.
Рассмотрим прямоугольные треуг-ики АВС (он прямоугольный, т.к. трапеция прямоугольная) и АНС. Они равны по одному из признаков равенства прямоугольных треугольников: если гипотенуза и катет одного прямоугольного треуг-ка соответственно равны гипотенузе и катету другого, то такие треуг-ки равны. В нашем случае:
АС - общая гипотенуза
АВ=СН (АВ является по сути той же высотой трапеции).
Значит, ВС=АН
Но АН=1/2АЕ, значит
<span>ВС=1/2АЕ.</span>
<span>половина периметра данного треугольника
</span>
S=pi*r^2
r=6.6/2=3.3м
S=3.14*3.3^2~34,2м^2