1) Противолежащие стороны параллелограмма равны. Противолежащие углы параллелограмма равны(так как у равных треугольников соответственные углы равны) . ДОКАЗАТЕЛЬСТВО:Проведя диагональ BD, мы получим два треугольника ABC и BCD, которые равны, так как у них BD - общая сторона, Р1=Р4 и Р2=Р3 (как накрест лежащие при параллельных прямых). Из равенства треугольников следует равенство противоположных сторон и углов. 2) Противоположные стороны попарно равны: AB = CD, AD = BC.
Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180, ∠B + ∠C = 180, ∠C + ∠D = 180, ∠D + ∠A = 180.
Противоположные стороны попарно равны и параллельны: AB = CD, AB || CD.
Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
Противоположные стороны попарно параллельны: AB || CD, AD || BC. 3) вроде у которого все стороны равны 4) Трапеция — четырёхугольник, у которого только одна пара противолежащих сторон параллельна. 6) Равнобедренная когда равны боковые стороны. Прямоугольная имеет прямой угол.
Дано:<ABCD-прямоугольный
<AD=15см,<CD=8,<AC=17
Найти:<AOB
Решение:
1.<AOB=<AD=15-8=7см<ACD
2.<AC=<ACD=17-7=10 cм
Ответ:7,10 см
2 прямые которые пересеклись это у нас вертикальные углы
сумма всех данных углов - 360*(без полезная инфа). их ес чё 4
у данного вида углов 2 угла одинакогова градуса значет 50 * 2 = 100
(360 - 100) / 2 =130* это сумма 2 углов 130 / 2 = 65* угол 1 и угол 3
(360 - 130) / 2 = 115* это угол 2,4
АС найдём по теореме косинусов
АС² = АВ²+ВС²-2*АВ*ВС*cos ∠B = 81*2+36-2*9*√2*6*1/√2 = 198-108 = 90
АС = √90 = 3√10
Угол найдём А так же по теореме косинусов
BC² = АВ²+AС²-2*АВ*AС*cos ∠A
36 = 162 + 90 - 2*9√2*3√10*cos ∠A
36 = 252 - 108*√5*cos ∠A
54 = 27√5*cos ∠A
2 = √5*cos ∠A
cos ∠A = 2/√5
∠A = arccos (2/√5)
∠B = 180 - 45 - arccos (2/√5)