1) C квадрат = А квадрат (1 катет) + Б квадрат (2 катет)
Значит 100= 64+36, второй катет 36=6 квадрат
2)Тоже самое делай, и будет все хорошо
C квадрат= А квадрат + Б квадрат это формула пифагора)
Удачи..
Находим диагональ d трапеции и боковую сторону а:
d = √(9+((21-9)/2)² + 8²) = √(225 + 64) = √289 = 17 см.
а = √(8² + 6²) = √(64 + 36) = √100 = 10 см.
Радиус окружности, описанной около равнобокой трапеции, равен радиусу окружности, описанной около треугольника, в котором одна сторона - диагональ.
R = (adc)/(4S).
S = (1/2)*8*21 = 84 см².
R = (10*17*21)/(4*84) = <span><span><span>
3570 /
</span><span>
336 =
10,625 см.
</span></span></span>
Нужно построить в координатах, это и квадрат, и ромб, и прямоугольник и параллелограм
1)угол MKP= углу NKL=90°
2)Mk=KN (по условию)
3)угол М=углу N
из всего следует, что треугольники МКР и NKL равны
Пусть МО⊥(АВС).
Проведем ОН⊥AD и ОК⊥АВ.
ОН и ОК- проекции наклонных МН и МК на плоскость прямоугольника, тогда и МН⊥AD, МК⊥АВ по теореме о трех перпендикулярах.
∠МАО = φ - угол между наклонной АМ и плоскостью прямоугольника,
∠МАН = ∠МАК = α = 50° - угол между наклонной АМ и сторонами AD и АВ прямоугольника.
ΔМАН
= ΔМАК по гипотенузе и острому углу (АМ общая, ∠МАН = ∠МАК = α), значит
АК = АН, и значит АКОН - квадрат и АО - его диагональ, а следовательно и
биссектриса угла BAD.
Стоит запомнить, что наклонная,
проведенная через вершину угла, лежащего в плоскости, и образующая
равные углы с его сторонами, проецируется на биссектрису этого угла.
Пусть а - сторона квадрата АКОН.
Тогда АО = а√2, как диагональ квадрата.
ΔАМН: АМ = AН / cosα = a / cos α
ΔAMO: cos φ = АO / AM = a√2 / (a / cos α) = √2cos α
cosφ = √2cos50°
φ = arccos(√2cos50°)