<span>Докажем, что OCDP - квадрат. Точка пересечения диагоналей квадрата делит их пополам, так как квадраты равны, OC=OD=PC=PD, тогда четырехугольник является ромбом. В ромбе есть две пары равных углов, тогда если хотя бы один из углов - прямой, то ромб является квадратом. Диагонали квадрата пересекаются под прямым углом (треугольники AOB, BOC, COD, AOD равны, тогда и равны углы при точке O, так как их сумма 360 градусов, то каждый угол равен 90 градусам). Таким образом, в ромбе OCPD есть два прямых угла - COD и CPD, значит, это квадрат. Известно, что диагональ квадрата равна его стороне, умноженной на sqrt(2) - здесь и далее - корень из 2, тогда сторона OCPD равна длине OC и равна 5sqrt(2). Площадь квадрата с такой стороной равна 50.</span>
P1=12;
P1=(x+y+z)
P2=2x+2y+2z
P2=2(x+y+z)
P2=2*12=24cм.
<em>Номер 3. </em>
1) АС-касательная, значит, ∠ОАС=90.
2) Проведем радиус ОВ. Получается, что тр-к АОВ-равносторонний, все углы по 60.
2) ∠ВАС=∠ОАС-∠ОАВ=90-60=30
Ответ: 30.
<em>Номер 4. </em>
1) Проведем радиус ОВ. Тр-к АОВ-равносторонний, все углы по 60
2) АМ и МВ- касательные, значит, ∠ВАМ=90-60=30=∠АВМ
3) ∠АМВ=180-2*30=120
Ответ: 120.
<em>Номер 7. </em>
1) CD-касательная, т.е. CD⊥АВ, СD-высота
2) Квадрат высоты, проведенной из вершины прямого угла, равен произведению двух отрезков, на которые высота делит гипотенузу. То есть
CD²=AD*DB
Пусть AD=x, тогда DB=25-x (т.к.АВ=25)
12²=x(25-x)
144=25x-x²
x²-25x+144=0
D=49
x1=16, то есть AD=16
x2=9 , т.е. AD=9
3) АЕ=AD=16 (т.к. АЕ и AD радиусы)
АЕ=AD=9 (т.к. АЕ и AD радиусы)
Ответ: 16 или 9.