12)
Пусть есть окружность, проходящая через 3 точки - начало координат M (0,0), точку на оси ординат N (0, 2*n) и точку A с координатами (a*cos(α), a*sin(α));
Центр окружности лежит где то на прямой y = n; пусть это точка с координатами (c, n);
Тогда
(x - c)^2 + (y - n)^2 = R^2;
c^2 + n^2 = R^2;
и, кроме того, уравнению окружности удовлетворяет точка A.
x^2 - 2*x*c + y^2 - 2*y*n = 0; (<em>R^2 благополучно сократился</em>);
a^2*(cos(α))^2 - 2*a*cos(α)*c + a^2*(sin(α))^2 - 2*a*sin(α)*n = 0;
с = a/(2*cos(α)) - n*tg(α);
<em>Это все, что нужно для решения задачи. </em>
Пусть есть другая точка B с координатами (b*cos(α), b*sin(α)); эта точка лежит на той же прямой MA, или на её продолжении за точку М, если b - отрицательно.
Тогда центр окружности, проходящей через точки M(0,0) N(0,2*n) и B имеет координаты (c', n) где
c' = b/(2*cos(α)) - n*tg(α);
расстояние между центрами равно
lc - c'l = la - bl/(2*cos(α)) = AB/(2*cos(α));
где AB - расстояние между A и B.
Разумеется, эта величина не зависит от n;
Если подставить численные значения, то ответ будет 3; <em>
ошибка в комментариях связана с тем, что я искал расстояния между точками пересечения окружностей с "осью X", координаты этой точки (2*c,0). Уж простите.</em>
13) По формуле Герона
r^2 = (p - a)*(p - b)*(p - c)/p; р - ПОЛУпериметр.
в данном случае r = 3; c = 7;
9*p = (p - 7)*3*4; p = 28;
сумма сторон равна 2*p = 56;
Все довольно таки просто: если угол Д=30⁰, а гипотенуза ΔАСД 24 см, то сторона АС в данном треугольнике равна половине гипотенузы, т.е. АС=½АД=24/2=12 см. Сторона АС в Δ АВС является гипотенузой, а угол ВАС равен 90-60=30⁰ ( поясняю: треугольник АСД прямоугольный, угол Д по условию 30⁰, значит угол САД равен 90-30=60⁰. Угол А по условию 90⁰, а высота АС делит его на 2 угла, один из которых 60⁰), значит ВС=½АС=12/2=6 см. Ответ:6 см
3) ∠АМК и ∠АВС соответственные и ∠АМК=∠АВС ⇒(МК)║(ВС) ⇒∠АСВ+∠МКС=180° (т.к. являются односторонними углами), тогда 1/2·(∠АСВ+∠МКС)=90°
5)т.к. ΔCMD-равнобедренный и СМ-основание ⇒ ∠CMD=∠MCD
т.к. BC║AD ⇒∠BCM=∠CMD - как накрест лежащие, следовательно ∠BCM=∠MCD ⇒ СМ - биссектриса ∠BCD
Отрезок пересекает плоскость под углом. Продолжим перпендикуляр к плоскости из одной его точки до точки, соединив которую с другим концом отрезка, получим отрезок, перпендикулярный проекции, длину которой нам надо выяснить. Заодно этот отрезок будет стороной большого прямоугольного треугольника, гипотенуза которого равна 15, одна сторона, перпендикулярная плоскости равна сумме 3 и 6 см (катет), и еще одна сторона - та, которую мы ищем.
(3+6) в квадрате+(проекция отрезка на плоскость) в квадрате=15 в квадрате.
81+х в квадрате=225
х в квадрате = 144
х=12 - ответ.
Сума сусідніх кутів паралелограма 180°
Нехай 1 кут=х
тоді 2 кут=40°+х
Складемо рівняння
х+40°+х=180°
2х+40°=180°
2х=180-40°
2х=140°
х=140°:2
х=70°--1 кут 70°+40°=110°--2 кут
Протилежні кути паралелограма рівні тому якщо у нас паралелограм ABCD тоді ∠A=∠C=70°; ∠B=∠D=110°