Рассчитываем объем произвольной призмыОбъем параллелепипеда равен произведению площади основания параллелепипеда на его высоту. Площадь основания параллелепипеда будет ровняться удвоенной площади треугольника, а высота равна высоте данной призмы. Вытекает отсюда, что объем произвольной призмы рассчитывается как произведение ее основания на ее высоту. Таким методом мы дали ответ на то, как найти объем треугольной призмы.Но в основе призмы может быть любой многоугольник. Тогда основу делим на треугольники. В результате данная призма будет разделена на треугольные призмы, которые имеют ту же высоту, что и данная прима. Сумма всех объемов треугольных призм, из которых состоит призма будет составлять объем данной призмы. Исходя из выше доказанной теории, можно сказать, что объем треугольной призмы можно найти, как произведение площади основания такой призмы на ее высоту. Доказано, что объем такой треугольной призмы рассчитывается по формуле:V = S1 × h + S2 × h + … + Sⁿ × h = (S1 + S2 + … + Sⁿ) h, где S1, S2, …Sⁿ - площади треугольников, на которые разбита основа треугольной призмы, а высота призмы обозначена буквой h. Сумма всех площадей треугольников будет равна S- площади основы такой призмы. Отсюда V = S × h.Эта формула также дает ответ на вопрос - как найти объем правильной призмы, он вычисляется так же.
Ответ:
.........................
Ответ:
128 000 000см
Объяснение:
Объём кубика, получившегося в результате распила: V1 = 2³ = 8cм³
Объём большого куба, который распиливали, равен
V = 512 000 000cм³
Если разделить V на V1, то получим количество маленьких кубиков
512 000 000 : 8 = 64 000 000 - количество кубиков в ряду
Каждый кубик длиной 2 см
64 000 000 · 2см = 128 000 000см - длина ряда в см
DC=10(пифагорова тройка)
H= sin30=DC/C1D, ТОГДА C1D=DC/SIN30=20;
P= а в квадрате, тогда P=100
Sбоковое= P*H
S=100*20=2000
Площадь треугольника равна полупроизведению высоты на основание, S=0.5*10*7=35