По условию задачи просят найти неизвестную сторону ромба, то есть проведя диагонали мы получили 4 прямоугольных треугольника. гипотенуза равна 12 и один из катетов (высота) 2,4, нам надо найти второй катит, здесь нам поможет Пифагор ищем катет по формуле c2=b2+a2, и остается только подставить 144=5,76+x2, получилось уравнение, но перед тем как его решить необходимо записать его в правильном виде −x2=5,76−144/*(−1)
x2=−5,76+144
x2=138,24 /2
x= 69,12
после извлекаем корень из 69,12 и получаем приблезительно 8,3
Ответ:
решение смотри на фотографии
Объяснение:
используем теорему косинусов:
BC^2=AB^2+AC^2-2*AB*AC*cos(BAC)
BC^2=30^2+50^2-2*30*50*(3/5)=900+2500-2*30*30=2500-900=1600
Значит BC=sqrt(1600)=40
Площадь прямоугольника-S=<span>a*b
</span>
Докажем, что S = ab.
Достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
Так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.
С другой стороны, этот квадрат составлен из данного прямоугольника с площадью S, равного ему прямоугольника с площадью S (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. Так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников:
<span>(a + b)2 = S + S + a2 + b2</span>, или <span>a2 + 2ab + b2 = 2S + a2 + b2</span>.
Отсюда получаем: S = ab, что и требовалось доказать.