160:100=1,6(это 1\%)
160-120=40(разница в цене)
40:1,6=25\%(разница в процентах)
.......................................................
X^3+4x^2-4x-16=0
x^2(x+4)-4(x+4)=0
(x+4)(x^2-4)=0
(x+4)(x-2)(x+2)=0
x1=-4
x2=2
<span>x3=-2 </span>
A-12=t.
Тогда f(x)=tx³+3tx²+6x+7
Возьмем производную:
f'(x)=3tx²+6tx+6
Достаточное условие возрастания на интервале: производная всюду на интервале положительна, хотя в некоторых точках может быть и равна нулю.
В данном случае это означает то, что неравенство 3tx²+6tx+6≥0 должно быть верным при любом x.
Пусть t=0 (a=12), тогда равна 6 и всегда положительна. а=12 нам подходит.
Теперь нужно рассмотреть два случая. Если t>0, то ветви параболы направлены вверх и неравенство будет верно для любого x при D≤0.
D=36t(t-2)
D≤0 при 0<t≤2
Если же t<0, то ветви параболы направлены вниз и этот случай нам не подходит.
Значит 0≤t≤2
0≤a-12≤2
12≤a≤14 -ответ.