По рисунку, мы видим, что две вершины вписанного квадрата лежат на стороне ас. Значит сторона квадрата lm параллельна стороне ас. Следовательно, треугольники lbm и abc подобны. Пусть сторона квадрата = х. Из подобия имеем: lm/ac=bp/bd (точка р - точка пересечения высоты bd и стороны квадрата lm). Но bp=bd-lm =bd-x (так как lm=lk=mn=kn - это стороны квадрата. Тогда х/ас=(bd-х)/bd, отсюда х*bd=ас*bd-ас*х. Тогда х(bd+ас)=ас*bd и х=ас*bd/(bd+ас).<span>В нашем случае х=12*16/28 = 6и6/7.
Ответ: сторона квадрата равна 6и6/7.</span>
Медиана, проведённая к гипотенузе, равна половине гипотенузы, значит, гипотенуза 10.
Это можно было и по теореме Пифагора так же найти.
Р=а+б+с=6+8+10=24
Существуют теоремы о неравенстве треугольника для трехгранного угла: "Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов". и теорема о сумме плоских углов трехгранного угла: "Сумма плоских углов трёхгранного угла меньше 360 градусов."
Значит если плоские углы равны 90° ,65° , 45° - такой трехгранный угол существует, так как 90°<45°+65° , а 90°+65°+45°=200 < 360°.
Вы не корректно записали задание. Я думаю , что расстояние R√3 /2. Я решаю при этом условии. Расстояние от центра до стороны это радиус вписанной окружности. Он находится по формуле r=Rcos180/n. Получаем
R√3 /2=Rcos180/n. Обе части делим на R, получаем cos180/n=√3 /2. Косинус 30 градусов равен√3 /2. Значит 180/n=30, а n=6.
По т.косинусов ТМ² = ТА² + МА² - 2*ТА*МА*cosBAC =
= 36*44 + 36*36 - 2*12*√11*36*√11 / 6 =
= 36*80 - 12*12*11 = 6*6*4*(20 - 11) = (6*2*3)²
TM = 36
треугольник ТМА -- равнобедренный и углы МТА = МАТ равны)))
((хоть и разным цветом на рисунке отмечены)))
если в треугольнике МОТ (он равнобедренный))) провести
высоту=медиану=биссектрису, то в получившемся прямоугольном треугольнике
угол при вершине О будет равен углу ВАС)))
R = (TM / 2) / sinBAC = TM / (2*sinBAC)
sinBAC = √(1 - 11/36) = 5/6
R = 36*6 / 10 = 21.6