<span>Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке М продолжением стороны АВ. Так как ВК – биссектриса угла АВС, то ∠АВК=∠КВС. Далее, ∠АВК=∠ВМС, как соответственные углы при параллельных прямых, и ∠КВС=∠ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ВСМ=∠ВМС, и поэтому треугольник ВМС – равнобедренный, откуда ВС=ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК: КС=АВ: ВМ=АВ: ВС, что и требовалось доказать. </span><span>Теорема. Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
</span>
S треугольника = √р(р-а)(р-b)(p-c) ( формула Герона) , где р=Р/2 => р= 12 см
S треугольника = √12(12-10)(12-10)(12--4)=8√6
Ответ: S=8√6
Соединив точку О с точкой С, получим два равных прямоугольных треугольника.
Для одного треугольника половина угла С вычисляется:
180 - 90 - 33/2 = 90-16,5=73,5
Откуда, угол С равен 73,5*2=147 градусов
сторона трикутника=Р/3=60√3/3=20√3, радіус вписаний=сторона*√3/6=20√3*√3/6=10