ВР- биссектриса значит она делит угол по полам. Значит угол РВС=углу РВА=30 градусов.
треугольник ВСР- равнобедренный т.к. ВР=РС.
Если треугольник ВСР равнобедренный, то углы у основания будут равны. основание-ВС, значит угол РВС= углу ВСР=30 ГР.
можем найти угол ВРС. 180-30-30=120гр.- по теореме о сумме углов треугольника.
мы знаем угол ВРС и теперь мы можем найти угол ВРА.
ВРА=180-120=60 гр.- по теореме о смежных углах.
угол ВАР=180-30-60=90 ГР.- ПО теореме о сумме углов треугольника.
ОТВЕТ: угол ВАР=90 ГР., угол АВР=30 ГР., угол ВРА=60гр
Рассмотрим треугольники ABM и CDN: в них стороны AB и CD равны, как противолежащие стороны параллелограмма; углы ABM и CDN равны как противоположные углы параллелограмма; углы BAM и DCN равны как половинки (AM и CN ведь биссектрисы) равных углов (противоположных углов параллелограмма). Т.е. тр-к ABM=CDN по стороне и прилежащим углам (2-й признак равенства). Значит, равны и их соответствующие стороны: AM=CN, что и требовалось доказать.
Прочерти немного прямую ВС. В моём случае отрезок назовём ОВ. Угол ДВС и угол ОВД смежные, т.е. ДВС+ОВД=180, следовательно угол ОВД=180 - 104= 76. Угол ОВД = АВС как вертикальные. Т.к треугольник равнобедренный, то угол ВАС=ВСА. Сумма всех углов треугольника равна 180(это докажешь сам). Следовательно, угол ВАС+ВСА=180 - 76= 104, а т.к. ВАС=ВСА, то они оба равны 104:2=52.
Ответ: ВАС=52, ВСА=52, АВС=76.
Катет лежащий против угла в 30 = 1/2 гипотенузы
обозначим один катет х, другой у
составляем систем уравнений
1/2 * х * у = 512√3
х² + у² = 4х²
из второго уравнения выражаем у=х√3 и подставляем в первое
х²√3=1024√3
х=32 - один катет
у=32√3 - другой катет
АОС-ДОС=АОД
180-26=154
ОТВЕТ: угол АОД = 154 градусам