Ответ:Треугольники АДЕ = треугольнику ВСЕ, ВС=АД, АЕ=ВЕ, ЕД=ЕС по трем сторонам
угол А=углуВ, сумма углов в параллелограмме прилежащих к одной стороне =180
углыА=углуВ=180/2=90. Теорема - если в параллелограмме есть прямой угол то это прямоугольник
Объяснение:
<span>S=0.5d1*d2=0.5*12*16=96 (кв.см) - площадь ромба
</span>Диагоналями ромб разбивается еа четыре равных прямоугольных треугольника, катеты которых равны 6см и 8см (диагонали в точке пересеч.делятся пополам)
По теореме Пифагора находим сторону ромба, она является гипотенузой:36+64=10010см - сторона ромба<span>Р=10*4=40 (см) - периметр ромба </span>
УгС1АС=угВАС= arcsin(CC1/AC)= arcsin1/2= 30° УгАВС=60° Ответ 60°
1) Продлим АС до пересечения с ДЕ .
∠САВ=∠СЕД как внутренние накрест лежащие углы (АВ║ДЕ) .
Рассм. ΔСЕД. ∠АСД является внешним углом ΔСЕД, поэтому он равен сумме двух внутренних углов этого треугольника, не смежных с ним. То есть ∠АСД=∠СДЕ+∠СЕД ⇒ ∠3=∠1+∠2 .
2) а║b ⇒ ∠MEB=∠EMK=∠1+∠2
∠EMK+∠EMA=180° ⇒∠1+∠2+∠3+∠4=180°
Но по условию ∠1=∠2 , ∠3=∠4 ⇒ 2*(∠1+∠3)=180° , ∠1+∠3=90° ,
ΔЕОМ: ∠1+∠3+∠МОЕ=180° , ∠МОЕ=180°-∠1-∠3=180°-90°=90°
3) Продлим сторону СВ.
∠РКС=∠КСМ=∠3 как внутренние накрест лежащие углы , т.к. а║b .
∠РКС - внешний угол треугольника ⇒
∠РКС=∠ВАК+∠АВК=(180°-∠1)+(180°-∠2)=360°-∠1-∠2 ⇒
∠3=360°-∠1-∠2 ⇒ ∠1+∠2+∠3=360°