Площадь квадрата (основания) ABCD равна AD^2=a^2
Треугольник АВС равнобедренный, следовательно, углы при АС равны (180°-120°):2=30°
По т.синусов
АВ:sin30°=2R
2R=2:1/2=4
R=2 см
--------
<u>Вариант решения:</u>
<span>Соединим вершину В с центром окружности О. </span>
<span>Т.к. <u>центр описанной окружности лежит на срединном перпендикуляре</u>, ВО</span>⊥<span>АС. ВН-высота и биссектриса ∆ АВС и делит угол АВС пополам. </span>
∠АВО=120°:2=60°
Углы при основании равнобедренного треугольника АОВ равны. ⇒
<span> ∆ АОВ - равносторонний. R=AB=2 см.</span>
Координаты точки М - середины АС
М(1;2)
Вектор ВМ(3;4) - медиана.
Длина этого вектора
√(3^2+4^2)=5