1) <span>АВ - биссектриса. значит углы ВАС и ДАС равны. По условию углы АВС и АВД равны. Сторона АВ общая. Следовательно треугольники АВС и ДАС равны. Значит и стороны АД и АС равны.
2)</span>По условию, треугольник ABC равнобедренный, тогда AB=BC. Значит, треугольники BAD и BCE равны по двум сторонам и углу между ними (углы BAD и BCE равны, так как углы A и C треугольника ABC равны, AB=BC, AD=CE по условию).
,,,,,,,,,.......,,,,.........,,,,
Даны углы при большем основании трапеции: 46° и 64°.
Треугольник, сторонами которого являются обе биссектрисы и большее основание . имеет углы: 23°, 32° и 180-23-32=125°. Углом между прямыми принято считать меньший их углов . Поэтому ответ 55°.
Вот когда рисунок появился - всё стало на свои места) Итак,начнём:
1) CK = √AK*KB(тема называется пропорциональные отрезки в прямоугольном треугольнике) =) CK = 6, CB=√AB*KB =) CB=12.
Рассмотрим треугольник ДОН, <DHO=60⁰ - линейный угол двугранного угла при основании. tg60⁰=DO/OH, OH=3/√3=√3
OH=1/3CH, CH=3√3,
рассмотрим ΔBCH, sin<C=CH/CB, CB=CH/ sin<C, CB=(3√3)/(√3/2)=6
SΔABC=1/2AB*CH, SΔABC=1/2*6*3√3=9√3
V=1/3*Sосн*H, V=1/3*9√3*3=9√3