Сумма смежных углов равна 180°, значит нам известна сумма вертикальных углов. Вертикальные углы равны, значит каждый из данных вертикальных углов равен 204/2=102°.
∠МОD=180-102=78°.
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
сумма углов в треугольнике 180. Тогда сумма оставшихся двух углов= 180-135=45.
Тогда один угол равен 2/5*45= 18, а друго1 3/5*45=27
Розглянемо трикутник АED
кут А = куту Д=70
кут АНД =180-(70+70)= 40
Расстояние от точки до прямой - длина перпендикуляра от этой точки до прямой. Поэтому строим отрезки ЕМ и ЕК. Нужно доказать, что МЕ=КЕ.
<span>Рассмотрим прямоугольные треугольники АМЕ и СКЕ. Они равны по одному из признаков равенства прямоугольных треугольников: гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого. В нашем случае АЕ = СЕ, т.к. Е - середина основания АС, углы А и С равны как углы при основании АС равнобедренного треугольника. В равных треугольниках равны и соответственные катеты МЕ и КЕ.</span>