Центральный угол равен дуге на которую он опирается
Найдем число, при умножении на которое вектора а получается вектор b. -25:(-5)=5.
х=8*5=40
Ответ:40.
Начертим <em>острые</em> углы произвольной величины и обозначим их <em>α</em> и <em>β</em>, соблюдая условие <em>α < β</em> .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра <u>тем же радиусом</u> отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и <u>два раза </u>отложим её на первой окружности. Угол СОВ=2β
По общепринятому способу проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол <em>mОk</em> равен требуемому по условию .<em>2,5 β - 0,5 α</em> (на рисунке он окрашен голубым цветом)
* * *
Способ построения угла,. равного данному, и деление его пополам наверняка Вы знаете, он есть в учебнике и на многих сайтах в сети Интернет.
Объяснение:
Перём одну часть за х. Тогда угол1=7х угол2=11х. Сумма углов треугольника равна 180. Составим уравнение и решим его.
180=7х+11х+90
90=18х
х=5
Угол1=5*7=35, угол2=5*11=55
По теореме Пифагора второй катет равен:
a = √10² - 6² = √64 = 8 см
Площадь прямоугольного треугольника равна половине произведения его катетов, либо произведению гипотенузы на высоту:
S = 0,5·8·6 = 24 см²
h = 2S/c (h - высота, c - гипотенуза, S - площадь)
h = 48/10 = 4,8 см.
Ответ: 4,8 см.