Дано:
ABCD - пар-мм
AB=CD=8 см
BC=AD=14 см
угол A=30⁰
BH - высота
Найти:
Sabcd - ?
Решение:
1)ΔABH - прямоугольный, т.к. BH - высота
2)BH=(1/2)*AB=4см как катет,лежащий против угла 30⁰
3)Sabcd=BH*AD=4*14=56 (см²)
Ответ:56см²
Проекцией бокового ребра правильной пирамиды является радиус окружности, описанной около основания. Его и ищем. Вначале найдем сторону. Для этого проведем апофему пирамиды - высоту боковой грани.
Вершина правильной треугольной пирамиды проецируется на основание (правильный треугольник) в точку пересечения высот (и медиан, и биссектрис). Эта точка деит их в отношении 2:1, считая от вершины треугольника.
Так как угол при стороне основания равен 45°, то меньшая часть высоты основания равна h, а вся высота 3h. Отсюда сторона основания равна a V((3h)^2 +(a/2)^2) = 3V2h.
Площадь основания S1 = 1/2*a*H =1/2*(3V2h)*3h = 9h^2/V2.
Площадь боковой поверхности пирамиды равна Sb = 3*1/2*(3V2h)*(hV2) =9h^2.
Площадь поверхности пирамиды. S = S1 + Sb =9h^2(1+V2) / V2/
Рад был помочь. если что спрашивайте.