Аай! Этот сайт сбросил все написанное только оттого, что я уходил от компа! Придется заново писать!( Хоть бы предупредил кто, что тут такая.. неудобность(
Ну, да ладно, приступим:
Назовем трапецию:
АВСД. При этом АВ и СД - стороны. АД и ВС - основания. На середине стороны АВ точка К, на середине стороны СД - точка Н. Соединим их отрезком КН. Давайте заодно сразу опустим из В на АД высоту трапеции, назовем получившуюся точку Р. Соединим карандашиком В и Д. Вот и весь рисуночек.
Теперь условия проговорим уже с учетом названий точек:
АД - диаметр описанной окружности,
АВ=СД=4√2,
КН=14см.
Высчитать надо длину АД - ее половина как раз и будет искомым радиусом окружности.
Легко показать, что треугольники АВР и АВД - не только оба прямоугольные, но и подобные. Нам в них известны длины:
АВ=4√2 - это гипотенуза для треугольника АВР и короткий катет для АВД;
РВ=КН=14см (легко показать-посчитать, что это равенство верно - надо ли?) Это часть гипотенузы для АВД.
Вот и все, что нужно. Можно составлять пропорцию:
АВ так относится к АР, как АД относится к АВ.
Теперь предстваим АД как сумму АР и РД - и можно начинать считать:
АВ/АР=(АР+РД)/АВ
Подставляем значения:
4√2/АР=(АР+14)/4√2
умножаем обе стороны на 4√2:
32/АР=АР+14
теперь обе стороны на АР:
АР в квадрате+14АР=32
Не знаю, как это тут посчитать - даже про вторую степень только буквами могу )) , но и так очевидно, что АР=2
А это значит, что АД=2+14=16
А радиус окружности - половина АД. т.е. 16/2=8см.
Чего и нужно было!
Ура!)
Первое утверждение точно правильное.
второе- нет (средняя линия трапеции равна полу сумме ее оснований)
третье-нет(во, первых такого признакам подобия не существует(есть по 2-М углам, по трем пропорциональным сторонам, по углу и двум пропорциональным сторонам, во-вторых можно нарисовать два треугольника, у которых будут равны по 2 стороны, но угол между ними будет разным. Поэтому треугольники не являются подобными или равными)
в итоге, к сожаленью, ты неверно ответил на это задание.
ВЕ медиан;AE=EC
биссектриса BF
высота BG
1.тогда угол ВАД равен 180°-135°=45°, т.к. углы, прилежащие к одной стороне АВ параллелограмма в сумме составляют 180°
Площадь равна АВ*АД*sin∠ВАД=42*16*sin45°=42*16*√2/2=336√2/см²/
2. сторона правильного треугольника, через радиус круга, вписанного в него вычисляется по формуле а=2r*tg(180°/3), значит, радиус равен 12/(2tg60°)=6/√3=2√3, и тогда площадь круга равна πr²=(2√3)²π=12π
3. Против угла в 30° лежит катет,/ т.е. высота трапеции, или же меньшая боковая сторона / равный половине гипотенузы, т.е. большей боковой стороны. Отсюда , большую если бок. сторону обозначить х, то меньшая бок. сторона равна 0,5х, а их сумма равна 36, значит, х =36/1,5=24/см/. Итак, высота равна 12 см, т.е. половине от 24см. Площадь ищем, как полусумму оснований, умноженную на высоту. Нижнее основание равно 8√3+√24²-12²=8√3+12√3=20√3. Тогда площадь равна (8√3+20√3)*12/2=168√3/см квадратных/
Sin 0 = 1
2 cos 60 = 1
3 tg 45 = 1 следовательно ответ равен 1