A) Это очевидно, т.к. их стороны будут попарно параллельны и лежат в параллельных плоскостях.
<span>б) PR=BD/2=3 см(как средняя линия);
PT=7-3=4 см(по св-вам параллелограмма);
<span> AC=2PT=4*2=8 см(по св-вам средней линии).</span></span>
3. Пусть О - точка пересечения диагоналей.
∠CFO = ∠EDO как накрест лежащие при пересечении параллельных прямых CF и DE секущей FD,
∠COF = ∠EOD как вертикальные, значит
ΔCOF подобен EOD по двум углам.
CF : DE = FO : OD
CF : 12 = 12 : 8
CF = 12 · 12 / 8 = 144 / 8 = 18
4. ∠QTH = ∠QNP как соответственные при пересечении параллельных прямых ТН и NP секущей QN,
угол при вершине Q общий для треугольников QTH и QNP, значит эти треугольники подобны по двум углам.
TH : NP = QT : QN
TH = NP · QT / QN = 25 · 12 / (12 + 8) = 25 · 12 / 20 = 15
5. OC : OK = 8 : (8 + 12) = 8 : 20 = 2 : 5
OB : OM = 6 : (6 + 9) = 6 : 15 = 2 : 5
ΔBOC подобен ΔМОК по двум пропорциональным сторонам и углу между ними.
ВС : МК = 2 : 5
ВС = 2 · 18 / 5 = 36/5 = 7,2
Но ведь нет никаких сведений ни о длинах сторон, ни о градусных мерах углов! решить очень сложно
Даны вершины параллелограмма АВСД: А (-2, 3, 1), В (-3, 1, 5), С (4; 1; 3).
Диагонали, пересекаясь, делятся пополам.
Есть диагональ АС, её середина точка О(1; 2; 2).
Теперь можно найти длину диагонали ВД:
ВД = 2ВО = 2*√(16 + 1 + 9) = 2√26 ≈ 10,19804.
.